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Introduction

Monte Carlo methods (MCMs) are based on the simulation of stochastic processes whose expected values
are equal to computationally interesting quantities. MCMs offer simplicity of construction, and are often
designed to mirror some process whose behavior is only understood in a statistical sense. There are a
wide class of problems where MCMs are the only known computational methods of solution. For example,
MCMs are the only feasible numerical approach to many-body quantum computations, a wide variety
of computations in finance and risk assessment, and even in the solution of certain partial differential
equations (PDEs) that arise in electrostatic and magnetostatic computations. The advantage of MCMs in
these problems are due to the fact that MCMs (1) can sample in high dimensions without the complexity
issues that high dimensions create in deterministic methods, (2) allow for rapid evaluation of quantities
of interest to low accuracy, (3) allow functionals of the solutions to field problems (think point values of
the solutions to PDEs), (4) allow for the rapid, stochastic, application of linear operators, both finite and
infinite dimensional, and finally (5) provide a wealth of parallelization opportunities to the underlying
sampling in the method at both the fine-grain and coarse-grain level. With the advent of exascale
computing, we believe that there is the need for further research into stochastic algorithms, and for
applied research in the efficient implementation and creation of MCM-based mathematical software that
will enable exascale computations on a wide range of significant scientific and technological problems
while retaining the intrinsic parallelism, fault-tolerance, favorable computation-communication ratios,
and algorithmic resilience.

Exascale Computing with MCMs

As high-performance computing (HPC) hardware is scaled up from the petascale to the exascale, many
applications do not have the intrinsic structure to provide the parallelism required to productively occupy
all of the computing elements that can operate simultaneously. In addition, as the number of independent
computational elements increases, the resulting stability of the computing platform decreases, which
introduces the need for system-level or algorithm-level resilience. MCMs handle the scalability issues
along with resilience due to the nature of MCMs themselves. Moreover, MCMs are naturally parallel due
to the fact that independent sampling can be distributed as one likes or needs to satisfy computational or
communication requirements. The amount of communication that one does per unit of computation can
be tuned in a very straight-forward fashion to optimize performance. This is due to the fact that each
quantity of interest is computed with a running mean and variance, which requires only a single integer
and two floating-point values of storage. This simplifies interprocessor communication, and enables a very
light-weight application-level check-point of all MCMs. Besides these three stored values per quantity of
interest, the only other piece of information required to restart the application is the random number
generator’s state. These key features of MCMs simplify interprocessor communication and enable a very
light-weight application-level check-point of all MCMs. These features also allow very high level fault-
tolerance to be achieved in a very generic way across MCMs. Ultimately, MCMs can tolerate otherwise
catastrophic loss of data while incurring only an accuracy penalty. Thus, parts of an exascale system can
fail, and if the hardware permits, the intact part of the machine can continue with the MCM and can
ignore the resulting loss of data from the disabled hardware if the problem distribution is made with an
eye towards partial hardware failure. The resulting computation will be slowed, but can continue and
complete.



It is important to note that an essential enabling technology for the scalable execution of MCMs
on modern HPC hardware is robust, reproducible, and high-quality parallel random number generation
software. For distributed memory HPC hardware, the Scalable Parallel Random Number Generators
((SPRNG) library is such a library, and is the work of one of the co-authors of this white paper. However,
current HPC architectures differ from the distributed-memory systems SPRNG was designed for in that
they have multicore processors and perhaps multiple accelerators. Thus, a new version of a library like
SPRNG that supports these architectural features is necessary.

MCM Research Requirements

There is a considerable body of applied probability and numerical stochastics that underpins MCMs
for a wide variety of problems. In particular, in the West, and especially in the former Soviet Union,
MCMs were developed for many of the PDESs, and their integral equation equivalents, that are commonly
the core mathematical problem in the computations currently consuming the largest HPC machines.
However, this work was not accompanied by stable, library-quality mathematical software. In addition,
even though there is much known, the subject is not well organized, and certainly the ability for applied
mathematics and computer science students to learn this material is hampered by a lack of mature,
developed curriculum in this area. Thus, the first set of requirements is to organize the existing material
on numerical stochastics for PDEs and integral equations from sources in the former Soviet Union, the
United States and Europe. This can serve as starting point for a comprehensive curriculum to train
graduate students in these methods, and to help make students who normally know only deterministic
numerical methods, equally familiar with these techniques. Ultimately, this curriculum will provide a
missing element in the education of students interested in uncertainty quantification, as the underlying
probabilistic foundation is same.

As more computational scientists become familiar with these techniques, the need for library-quality
mathematical software for solving particular problems with these MCMs is expected to grow. Thus,
a major early project should be the creation of prototype mathematical libraries in a few core problem
areas. The most obvious of these is in the application of MCMs to the numerical solution of elliptic PDEs.
This work will require both the development of fast MCM-based solvers, and geometry packages that will
support this method of solution. Since MCMs for the solution of elliptic PDEs requires the evaluation
of functionals on random walks in the problem geometry, representation of complicated geometries will
need to be tailored to this method of simulation. In addition, reusable libraries of probabilistic transition
functions and quadrature methods should be created to enable the fast evaluation of the representational
functionals.

When this is completed, the ability to solve a large class of problems will be possible with efficient and
optimized MCMs. However, this can only serve as a starting point, as ways to optimize the algorithms,
and to further incorporate architectural constraints into the libraries will be an ongoing effort. One should
consider the development of modern numerical linear algebra libraries to appreciate the breadth of this
undertaking in the MCM context.

Conclusions

The nature of MCMs makes them a robust, resilient, and naturally parallel set of algorithms for modern
and future HPC platforms. They have always been highly scalable algorithms, and have provided a
consistently scalable way to solve certain problems, and will continue to scale from the petascale to the
exascale and beyond. The main drawbacks for the widespread use of MCMs are the development of
new stochastic algorithms for a larger class of HPC-dependent problems, and starting to encapsulate
these MCMs into high-quality mathematical software libraries. Addressing these drawbacks will not only
impact applied mathematics and computer science development, but it will also allow the establishment
of a new curriculum in stochastic numerical analysis to train numerical analysts and library developers
in these qualitatively different algorithms.



